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Information encoding in a globally coupled network is studied. When the network is in an oscillatory state,
the network activities are dominated by the intrinsic oscillatory current and the stimulus is poorly encoded.
However, when the amplitude of the input signal is large, the input can still be well read from the population
rate and the temporal correlation between spike trains. The underlying reason is that there exists a competition
between the intrinsic correlation caused by the oscillatory current and the external correlation caused by the
input signal. With small input signal, the rate code performs better than the temporal correlation code. Our
results provide insights into the effects of network dynamics on neuronal computations.
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I. INTRODUCTION

The brain has many different states such as waking, sleep,
attention, and so on. It is a central issue in neuroscience to
explore the interplay between intrinsically generated activity
and the input from the external world. When the brain is in
different functional states, neural response to the same stimu-
lus can be totally different �1�. Even subtle change in net-
work dynamics can cause large change in the output of the
network �2�. A well-known example of the network dynam-
ics in determining neural responsiveness is the effect of at-
tention which can enhance neuronal response and selectivity,
as well as behavioral performance �3�.

Synchronized rhythmic oscillation, whose frequency
ranges from several to several hundred hertz, is one common
type of network dynamics in nervous systems �4�. It is
widely believed that these oscillations are caused by the dy-
namic interplay between excitatory and inhibitory popula-
tions of neurons with inhibition playing a particularly impor-
tant role �5�. But it is still not clear how the external signal
interacts with network dynamics when the network is in an
oscillatory state. Both experimentally and theoretically, it is
shown that these oscillations can provide an additional phase
relative to the background oscillation cycle to encode infor-
mation �6�. In several recent theoretical studies, it is found
that ongoing oscillatory activity can improve spike precision
and stimulus discrimination based on the population spike-
count response �7�. However, in these theoretical studies, the
oscillation is obtained via imposing a rhythmic external cur-
rent on each neuron, not arise from the intrinsic network
dynamics. It is still an interesting topic to explore whether
information can be faithfully encoded in a self-sustained os-
cillatory network. In nervous system, information is repre-
sented by the firing rate or by the precise spike time �8�. But
it is still unclear how the two codes behave when the net-
work is in the oscillatory state.

Here we study information encoding in a recurrent net-
work consisting of coupled integrate-and-fire �IF� neurons.

With strong coupling strength, the network is in the oscilla-
tory state. When stimulus is injected to such an oscillatory
network, there exists a competition between the intrinsic os-
cillatory current and the signal. When the signal is weak, the
network behavior is dominated by the synaptic current and
the stimulus is poorly encoded. But the time when those
packets of synchronous activities appear is still related to the
input signal. With a large signal amplitude, the population
rate can follow the input signal instantaneously. The rate
code and the temporal synchrony code behave in a different
way. When the input signal is small, the signal is better en-
coded by the population rate.

II. MODEL

The network we study is composed of N=100 IF neurons
�9�. The dynamics of the network is described by the follow-
ing equation:

�m
dVi

dt
= Vrest − Vi + I0 + Isyn + s�t� + �i�t� . �1�

Here, �m is the membrane time constant, Vi is the membrane
potential of the ith neuron, Vrest is the resting membrane
potential, I0 is the external constant input, and Isyn is the
synaptic current. �i�t� is the independent Gaussian colored
noise with the correlation time set as 2 ms whose standard
deviation is used to represent noise intensity D. The stimulus
s�t� is a Gaussian noise low-pass filtered at 50 ms and half-
wave rectified whose standard deviation is the signal ampli-
tude A �10�. Unless specified otherwise, A is set as 5. When
the membrane potential Vi reaches threshold value Vth, a
spike is generated and the membrane potential is reset to the
resting potential at which it remains clamped for a 5 ms
refractory period. The synaptic current Isyn takes the form

Isyn = �
exci

g
t − tj

tex
e−�t−tj�/tex + �

inhi

rg
t − tj

tin
e−�t−tj�/tin. �2�

Here tex=1 ms for excitatory connections and tin=2 ms for
inhibitory connections, g is the excitatory coupling strength,
tj is the time point where the jth neuron fires, and r is the*wangwstzz@yahoo.com.cn
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ratio of the strength of inhibitory connection to that of exci-
tatory connection set as 2.5 in order to make excitatory cur-
rents balanced with inhibitory currents. The network is
coupled in an all-to-all manner. 80% of the connections be-
tween neurons are excitatory and 20% are inhibitory. Here
�m=20 ms, Vrest=−60 mV, I0=5, and Vth=−50 mV. Iex�t�
= 1

N�excig
t−tj

tex
e−�t−tj�/tex is the averaged excitatory synaptic cur-

rent. Numerical integration of these equations is performed
by a second-order stochastic algorithm with a time step of
0.1 ms �11�.

A moving time window of length L is used to account
how many neurons of the network discharge spikes in this
time bin. The time window is moving in the step of 1 ms.
Such a temporal firing rate of the whole network is used to
represent the output of the network. Here we call it spike
time histogram �STH� �12�. The correlation coefficient Csp
between the input signal s�t� and the STH p�t� is used to
quantify how well the input signal is encoded by the network
�13�. Csp is calculated as

Csp��� =
��p�t + �� − p̄��s�t� − s̄��t

���p�t + �� − p̄�2�t��s�t� − s̄�2�t

. �3�

Here the angular brackets denote an average over time. The
value of �, where the correlation coefficient is maximized, is
the response delay of the network. For the maximal correla-
tion in Fig. 1, the value of the response delay is equal to 1
ms. The peak value of the correlation coefficient is used to
characterize the fidelity of rate code. To analyze what effects
the intrinsic oscillation of the network has on information
encoding, the correlation coefficient Csi between s�t� and
Iex�t� and the correlation coefficient Cpi between p�t� and
Iex�t� are also calculated in a similar way. An average over 50
different noise realizations is taken to obtain reported results.

The correlation between activities of different neurons can
provide additional information about the input signal �14�. In
order to see how the synchrony code behaves in the oscilla-
tory network, a temporal synchrony is used to compute how
much information is encoded by the precise spike time. A
moving time window of length T is divided into small bins of
�t=1 ms. Two spike trains are given by X�l�=1 if one neu-
ron spikes or 0 if it does not and Y�l�=0 or 1 for another
neuron, with l=1,2 , . . . ,m �here T /�t=m�. The temporal
synchrony is defined as

Hij�t� = �
l=1

m

X�l�Y�l� . �4�

The population H�t� is obtained by averaging over all pairs
of the neurons in the network. The correlation coefficient Csh
between s�t� and H�t� is used to quantify how well the tem-
poral synchrony between neural activities matches the input
signal.

Obviously, the temporal synchrony H�t� is not indepen-
dent of the population rate p�t�. It has been found that the
degree of synchrony between neuronal activities increases
with firing rate �15�. In order to make a comparison of the
two codes, the length T of the moving time window used to
compute H�t� is set equal to the length L of the moving time
window used to compute p�t�. To choose a reasonable bin
size, we plot the two correlation coefficients Csp and Csh
versus the bin size with g=0 in Fig. 1. The value of the
length 21 ms is chosen to make the two codes almost both
optimized when there exist no couplings between neurons.

III. RESULTS

Figure 2�a� shows the spatiotemporal firing pattern with
g=20 and A=0. Obviously, there exist some oscillations,

FIG. 1. The two correlation coefficients Csp and Csh versus the
length of the time bin for D=7, g=0, and A=5.

FIG. 2. D=7 and g=20. �a� Spike raster plots with A=0. ��b�–
�f�� The input signal, spike raster plots, p�t�, Iex�t� and temporal
synchrony H�t� as a function of time with A=5. �g� Points sampled
at 2 ms intervals taken from STH and the input signal.
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which can be confirmed by a peak located at about 10.5 Hz
in the power spectrum of the network �data not shown here�.
With a weak signal injected to such an oscillatory network,
the amplitude of the synaptic current is larger than that of the
signal and the spike train of every neuron is dominated by
the intrinsic synaptic current Iex�t� but not the weak signal.
As a result, the output of the network p�t� does not follow
s�t� linearly but Iex�t� �Figs. 2�b�–2�e��. These synchronous
firings are mainly caused by the intrinsic synaptic current
�Fig. 2�f��. That is, the weak signal cannot be read from the
temporal synchrony H�t�. p�t� is plotted versus s�t� in Fig.
2�g�. The dots are randomly distributed in the whole plane,
meaning that the input signal cannot be encoded by the net-
work when the network is in an oscillatory state. However,
the time when these synchronous packets appear is still re-
lated to the input signal. When s�t� has a large magnitude in
a short time window �see the arrow in Fig. 2�b��, the number
of synchronous packets of the network output in the corre-
sponding time window is obviously larger than that in other
time windows. It seems that there exists some competition
between the external signal and the intrinsic oscillatory cur-
rent. It is noted that in epoches of large signal, the neurons
tend to fire with more correlation.

Figure 3 depicts the correlation coefficient Csp, Csi, and
Cpi versus the strength of excitatory connection g to clearly
demonstrate the effect of oscillatory synaptic current on in-
formation processing. With the coupling strength increasing,
Csp and Csi decrease while Cpi almost keeps constant at 0.95.
The underlying mechanism can be interpreted as follows.
When the interplay between neurons is weak, the network
activities are dominated by the independent noise and the
signal. That makes the population firing rate follow the sig-
nal rapidly and faithfully. The synaptic current Iex�t� is only
p�t� filtered by the synaptic time course. Thus, s�t�, p�t�, and
Iex�t� resemble each other and the signal can be well encoded
by the network. As g increases, the amplitude of Iex�t� in-
creases and the effect of Iex�t� on the membrane potential of
each neuron becomes more evident. Therefore, the network
activities are gradually dominated by Iex�t� and the intensity
of the intrinsic oscillation also gradually increases. Csp and
Csi decrease and the precision of signal encoding decreases.
With g=20, Csp is less than 0.35 while Cpi is kept at 0.95,
meaning that the outputs of the network contain quite less
components of the signal s�t� and are almost fully dominated
by the intrinsic synaptic current Iex�t�.

To clearly demonstrate the relationship between the intrin-
sic oscillation and information encoding, we use the STH

variance �2= ��p�t�− p̄�2�t to quantify the degree of coher-
ence of neural activities with A=0. When there is no collec-
tive oscillation of the whole network, p�t� fluctuates around a
constant value incoherently and �2 is small. �2 increases
with the emergence of collective firing and oscillation, which
arises from the interaction between the independent noise
and the couplings �16�. The variance �2, the correlation co-
efficient Csp, and Csh are plotted in Figs. 4�a�–4�c�, respec-
tively, as the coupling strength g and the noise intensity D
are systematically varied. Compared with rate code, the tem-
poral correlation behaves in a slightly different way, which
will be discussed in the next paragraph. It can be clearly seen
that, when the network is in an oscillatory state, the signal is
poorly encoded by both the population rate p�t� and the tem-
poral synchrony H�t�. The precision of signal encoding de-
creases when the oscillatory intensity increases. The under-
lying reason is that, in the oscillatory state, the output of the
network is dominated by the intrinsic synaptic oscillatory
current as discussed above. For every value of g, there exists
an optimal noise intensity level for rate code. Such a positive
effect has been widely investigated and is generally termed
“stochastic resonance” �17�. It is believed that it arises from
the interplay between the nonlinearity of neurons and the
noisy environment in nervous system �18�. For small noise
currents, only when the signal is large, the neurons can fire.
Therefore, all the neurons tend to discharge spikes at the
same time. Since primarily independently firing neurons are
required in rate code scheme, rate code is destroyed and the
signal is poorly encoded by the population rate �Fig. 4�b��.
For intermediate noise intensity, the noise can help the neu-

FIG. 3. D=7 and A=5. The correlation coefficient Csp ���, Csi

���, and Cpi ��� versus the coupling strength g.
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FIG. 4. �a� The STH variance �2 with A=0. �b� The correlation
coefficient Csp. �c� The correlation coefficient Csh plotted as a func-
tion of the noise intensity D and the coupling strength g with A
=5.
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rons to go over threshold. The state of every neuron is much
different when the signal arrives. As a result, the correlation
coefficient Csp is maximal since all the neurons almost fire
independently. However, when the background current is too
large, the background activity can overwhelm the weak sig-
nal. Therefore, the signal cannot be well read from p�t�. With
g increasing, the optimal noise level increases, meaning that
the neurons need more energy to go over threshold. For g
�15, due to the intense intrinsic oscillation, the value of the
correlation coefficient Csp is kept at a low level. With large
value of the noise intensity, because the noise can destroy the
intrinsic oscillation of the network, the signal can be better
encoded. The relationship between the oscillatory intensity
and information encoding is summarized in Fig. 5. Obvi-
ously, as the oscillation becomes more intense, the fidelity of
both rate code and synchrony code decreases. With the same
oscillation intensity, the fluctuation of the two correlation
coefficients arises from different values of the noise intensity
D or the coupling strength g.

In experiments, it has been shown that the synchrony be-
tween neural activities can be modulated by the input �19�,
meaning that the synchrony may play an important role in
information encoding. In order to compare the rate code with
the synchrony code, we plot the difference between Csp and
Csh versus the noise intensity D and the coupling strength g
in Fig. 6. If the difference is greater than 0, the rate code
performs better than the synchrony code. Otherwise, the syn-
chrony code performs better than the rate code. When both
the noise intensity D and the coupling strength g are small,
the rate code performs better. To clearly see what happens,

one example �D=4 and g=4, point A in Fig. 6� is plotted in
Fig. 7. With small value of D and g, the temporal synchrony
does not follow the signal well when the input signal is low
�see the arrow in Fig. 7�d��. To exactly examine when the
rate code performs better, we define a scaled output as

f�t� =
f�t� − f̄

���f�t� − f̄�2�t

. �5�

Here f�t� can be the rate code p�t� or the synchrony code
H�t�. Such a rescaling for the comparison of the rate code
p�t� and the synchrony code H�t� is natural because it is used
to compute the two correlation coefficients Csp and Csh �see
Eq. �3��. Then we plot the two scaled outputs versus the
signal s�t� as Fig. 1�g�. After the points for the same s�t� are
averaged, we get the relationship between the two scaled
codes and the signal s�t� �Fig. 7�e��. For s�t��3, with s�t�
increasing, the synchrony code almost keeps constant while
the rate code increases more sharply. For 3�s�t��5, the rate
code is much more sensitive to the input signal than the
synchrony code. As a result, the signal is better encoded by
the rate when the input signal is small. When the network is

FIG. 5. The two correlation coefficients Csp ��� and Csh ���
versus the STH variance �2. The horizontal and vertical coordinate
values of every data point correspond to the same values of the
noise intensity D and the coupling strength g.
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FIG. 6. Csp−Csh as a function of the noise intensity D and the
coupling strength g.

FIG. 7. Examples of point A in Fig. 6 with D=4 and g=4: �a�
the signal. �b� Spike raster plots. �c� STH. �d� H�t�. �e� Scaled
output versus the signal. First the code is rescaled according to Eq.
�5�. Then the two curves are obtained by averaging on the points
with the same input signal.
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in the oscillatory state, the synchrony code performs a little
better than the rate code. One example �D=7 and g=20,
point B in Fig. 6� is plotted in Fig. 8. Without input signal, in
some epoches, the network can produce spikes due to the
external noise and the coupling. With input signal, both the
rate code and the synchrony code increase, but the latter is
more significant �see the arrow in Fig. 8�d��. That is, with
s�t� increasing, the synchrony code increases more sharply
than the rate code �Fig. 8�e��. Therefore, the signal can be a
slightly better read from the synchrony code.

To confirm our idea that there exists some competition
between the intrinsic oscillatory current and the input signal,
we change the amplitude of the signal which is injected to
the oscillatory network. Spike raster plots and STH with dif-
ferent signal amplitude are shown in Figs. 9�b�–9�e�. In the
presence of the input signal, the number of synchronous
packets increases as the signal amplitude increases, meaning
that the time when synchronous packets appear is more re-
lated to the input signal �compare Figs. 9�b� and 9�d��.
Therefore, the signal is better encoded by the network �see
Fig. 9�f��. That is, the amplitude of s�t� can determine
whether the output of the oscillatory network follows the
input. For every signal amplitude, when the coupling
strength g is large, the signal is better encoded by the tem-
poral synchrony because the synchrony code increases a little
more sharply than the rate code as discussed above.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have investigated information encoding
in a locally coupled network consisting of IF neurons. It is
found that, when the network is in an intrinsic oscillatory
state, the responsiveness to the input signal is weak. There
exists a competition between the intrinsic current and the
input signal. If the amplitude of the signal is large, it can still
be well encoded by the output of the network. With small
input signal, the signal can be better encoded by the rate
code than the synchrony code.

Our result demonstrates that the oscillation has negative
effects on information encoding if it arises from the intrinsic
network dynamics. However, linear information code is not
the only story in information processing of neuronal net-
work. Synchronized firings that are still related to input sig-
nal may produce a new mapping and representation of the
stimulus. Furthermore, these synchronous packets which are
still related to the input signal can help information transmis-
sion between functional groups. In the working brain, many
functional groups are often involved in the process of infor-
mation encoding. The coherent rhythmic activities can be
caused by the complicated interplay between functional
groups. How the information is encoded in clustered oscilla-

FIG. 8. Examples of point B in Fig. 6 with D=7 and g=20: �a�
the signal. �b� Spike raster plots. �c� STH. �d� H�t�. �e� Scaled
output versus the signal.

FIG. 9. The signal with different amplitudes injected to the os-
cillatory network. The value of the coupling strength is 20. �a� The
signal versus time for A=5. �b� Spike raster plots and �c� STH for
A=5. �d� Spike raster plots and �e� STH for A=20. �f� The two
correlation coefficients Csp and Csh versus the signal amplitude.
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tory network deserves a further study. The IF model used
here is too simple to include any biological ion currents. It is
noted that Parga and Abbott �20� extended the IF model by
adding a nonlinear membrane current. The extended IF neu-
rons can jump between up and down states, thereby produc-
ing bimodal membrane potential distributions, which has
been widely discovered in experiments �21�. It is still open to
explore how the rate code and the synchrony code behave
when the network can jump between up and down states. It

has been shown that the two codes are affected oppositely by
spike-frequency adaptation in a more biological model work
�22�.
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